
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, VOL. 18, 337-359 (1994) 

NUMERICAL SIMULATION OF FREE SHEAR FLOWS 
AND FAR-FIELD SOUND PRESSURE DIRECTIVITY 
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Sverdrup Technology, Inc., NASA Lewis Research Center Group, Brook Park, OH 44142, V.S.A. 

SUMMARY 
An implicit spatial differencing technique with fourth-order accuracy has been developed based on the 
Pade compact scheme. A dispersion-relation-preserving concept has been incorporated into the numerical 
scheme. Two-dimensional Euler computation of a spatially developing free shear flow with and without 
external excitation has been performed to demonstrate the capability of the numerical scheme developed. 
Results are in good agreement with theory and experimental observation regarding the growth rate of the 
fluctuating velocity, the convective velocity and the vortex-pairing process. The far-field sound pressure 
generated by the computed shear flow solution using Lighthill's acoustic analogy shows a strong directivity 
with a zone of silence at the flow angle. 
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INTRODUCTION 

Jet noise has emerged as a major issue in the High Speed Civil Transport Program. Noise 
reduction to an acceptable level set by FAR 36 Stage I11 is a challenging task to achieve. In 
order to accomplish this task, it has become increasingly important to be able to predict the 
sound pressure as a measure of noise level in the aeroacoustic research area. Far-field noise is 
generated as a byproduct of the jet flow behind the exhaust nozzle. Therefore understanding of 
this sound source is crucial. Lighthill,' through his pioneering acoustic analogy, identified the 
sound source to be a fluctuating Reynolds stress. Numerous other works, both experimental and 
analytical, have been focused on the flow turbulence associated with the sound at a distance. 

Experimental observations show that the sound power emitted from the jet column is greatest 
within four or five diameters downstream and then decays rapidly through a transition region. 
This indicates that the initial development of the jet, before it becomes fully turbulent, should 
be clearly understood so that an accurate noise prediction can be made. The fully turbulent 
flow assumption yields analytic results which are far from reality in the developing regions. 
Freymuth2 observed organized large-eddy structures in a separated flow of a jet. Brown and 
Roshko3 also found a large vortical structure in a free shear layer. The identity of this large 
vortical structure is discernible even in the fully turbulent region far downstream. Winant and 
Browand4 reported that a mechanism of the mixing layer growth is an interaction of adjacent 
large vortices. These investigators have shown that the flow in free shear layers such as jet 
and plane mixing flow is well behaved and more organized than previously thought. Shear flow 
is dominated by large vortical structures which are very predictable and controllable. These 
flows, which have been thought to be fully turbulent and therefore random and chaotic, have 
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become research subjects with a quite different perspective since the observation of 
these organized structures. The separation of the organized flow entities from the fully 
random quantities make it possible to study turbulent shear flows in a certain deterministic 
way. 

A turbulent flow field is made up of a range of length scales from the Kolmogorov scale 
to the integral scale. If the numerical mesh size can be made fine enough to resolve the 
smallest scales which dissipate the kinetic energy, then direct numerical simulation (DNS) 
is the tool to obtain the entire turbulent flow structure. However, the dissipative scale 
becomes finer as the Reynolds number is increased and the practical hardware limitation 
is rapidly reached. Therefore the DNS method is limited to simulating only low-Reynolds- 
number turbulence. For practical computation of higher-Reynolds-number flows, small-scale 
fluctuations can be modelled so that desired large-scale eddies can be computed directly, 
while proper dissipation is provided by the small-scale eddy model. This approach, which 
is referred to as large-eddy simulation (LES), has been successfully employed in many flows with 
practical applications. 

In order to obtain the flow field as the source of sound using DNS or LES, the simulations 
must be performed using numerical techniques with least distortion and diffusive characteristics. 
The source of numerical diffusion and phase error is known to be mainly the numerical 
formulation of convective terms. This numerical artefact gets worse for high-Reynolds-number 
flow simulations. Typically, free shear flows of interest have very high Reynolds numbers. 
Therefore a higher-order-accurate numerical scheme which meets the previously mentioned 
requirements is needed. To develop a highly accurate numerical scheme for this purpose, it will 
be appropriate to consider only an inviscid flow. A fourth-order Pade implicit differencing 
scheme with a dispersion-relation-preserving property is introduced in the context of the 
numerical formulation of the Euler equations. A plane shear flow generated by two streams of 
air with different velocities is chosen as an example to validate the numerical schemes. Subsonic 
and supersonic results will be shown and discussed here together with physical observations of 
the spatial growth of fluctuating velocity, the development of large vortical structure and the 
vortex-pairing process. Finally, aeroacoustic analysis is made to see the directivity of sound 
pressure generated by the inviscid shear flow. 

GOVERNING EQUATION 

The variables T, p ,  x, u, t, p and e represent dimensionless quantities of temperature, density, 
position, velocity, time, pressure and total energy per mass respectively. The non-dimensionaliza- 
tion is based on reference quantities T:, p:, l:, u:, t:, p: and e: with additional definitions 
t: = l,*/u,*, p: = p,*uf2 and e: = u:’. Then the non-dimensional equation of state can be written as 

with T = y(y - l)Mf PT 
YMf ’ 

p = -  

where y is the ratio of specific heats, M ,  = u:/J(yR*T:) and R* is the gas constant. The Euler 
equations in two-dimensional Cartesian co-ordinates (x, y) are 

aq af ag 
at ax ay 
- + - + - = o ,  

where 
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The dimensionless speed of sound, c, becomes f i / M , .  Equation (1) can be written in generalized 
co-ordinates (t, q)  as 

aQ dF dG 
- + - + - = 0, 
at a t  all 

FORMULATION OF DIFFERENCE SCHEME 

Spatial differencing scheme 

The Pade compact difference scheme used here is an implicit method in space. The Pade 
compact scheme5-’ has also been used previously in flow computations. This scheme uses a 
symmetric numerical stencil in a compact form so that only a tridiagonal or pentadiagonal 
matrix inversion is needed. Even for higher-order formulations the compactness is still main- 
tained. The following general form of the Pade difference scheme can be used to obtain a 
difference form of the first derivative o f f :  

- ... - h+2 - f i - 2  h+l - A-1 

2h ’ + a1 4h + a2 

where the subscript i is the mesh index and h is the uniform mesh size. In the present formulation 
we use the following form to assure that only a tridiagonal matrix inversion is required to obtain 
a solution for f’: 

f i + 2  - f ; : - 2  f i + 1 -  . t - 1  
+ a  

2h a f i - l  + f: + a f i + l  = b 4h (3) 

The above formulation is fourth-order-accurate if a = (2a + 4)/3, b = (4a - 1)/3 and a is a free 
parameter. Equation (3) can be sixth-order-accurate if a is set to f .  

To obtain an optimum value of the free parameter a, the dispersion-relation-preserving (DRP) 
concept is adopted. For an illustration of the DRP method, a fourth-order finite differencing of 
f ’  is given explicitly by 

, -&+I - si-* - +h+2 - h-2 

2h 4h f’= 3 

The above expression is based solely on the truncation of a Taylor series. In unsteady flow 
computation the order of accuracy is not the only issue to obtain a reliable solution. Unsteady 
flows by nature contain wave trains, which must be well resolved. Numerical difference 
formulations constructed solely by truncation of Taylor series do not guarantee wave preserva- 
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tion even when higher-order differences are used. The wave becomes severely distorted as the 
wave number or the frequency in a time space is increased and eventually a physical interpreta- 
tion of the results becomes impossible. Tam and Webb' proposed the DRP scheme in which 
the dispersion characteristics follow closely the original differential form. For example, suppose 
we construct an explicit difference formulation using six neighbouring points as 

L + 1 -  A - 1  f i + 2  - f i - 2  + C f i + 3  - f i - 3  

4h 6h 
f' = a + b  

2h (4) 

For this expression to be fourth-order-accurate, the constants b and c must be (9 - 8a)/5 and 
(3a - 4)/5 respectively. For c = 0 the above expression uses four adjacent points and is based 
solely on the truncation of a Taylor series. Equation (4) contains the free parameter a which is 
to be optimized. The central idea of DRP lies in making the discrete form of f '  depict the 
differential form o f f '  in the Fourier wave space. Thus we define the Fourier transform of f ( x )  
and its inverse as 

Fourier transforming equation (4) using the above definitions gives 

b .  c 
2 3 

a sin(rch) + - sin(2~h) + - sin(3~h) 

Therefore with I? = ~h we have the wave relation 

( 5 )  
b .  c 
2 3 

I?, = a sin(I?) + - sin(2k) + - sin(32). 

Notice that with the difference approximation given by (4) an input wave number 17 is distorted 
numerically into a different wave number I?,. It is required to optimize the free parameter a so 
that the response wave I?, depicts the input wave I? closely over the wave number space of 
interest. In Reference 8 the function to be minimized is chosen as 

n/' 

- 7712 

(I? - I?,)' dI?. 

The limits of the integral are selected to be -n/2 and n/2 under the assumption that a minimum 
of four mesh intervals are required to resolve a wave. This appears quite plausible, because the 
value of K becomes very small over a wide range of a for longer waves, e.g. 8h or 16h waves. 
For these longer waves optimization based on the DRP concept becomes less meaningful. 

Figure 1 shows the numerical behaviour of E,/n against I?/n for various values of a. The straight 
line represents the exact differentiation. It is seen that the curve for a = 1.59853, which has been 
evaluated to be the optimum in Reference 8, closely follows the straight line for I?/n up to about 
0.5, while the sixth-order counterpart is valid up to about rl/n = 0.4. A conventional fourth-order 
differencing, which is obtained at a = 4, restricts its validity only to a long-wave range, say 
I?/n < 03.  There is no doubt that the second-order-accurate scheme is severely limited to 
resolving only long waves. 

It is straightforward to make the Pade formulation (3) to be DRP since it has a built-in free 
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Figure 1 .  Wave number relation in explicit differencing scheme 

parameter a to be optimized. Using the same definition of Fourier transform as used in the 
explicit example, we can formulate the wave number relation as 

a sin(%) + (b/2) sin(212) 
1 + 2acos(%) 

K, = (7) 

The optimum value of CI is computed to be 0-35619 when the integral K defined by (6) is 
minimized. Figure 2 illustrates the wave number relation between the input wave i / n  and the 
response wave 12,/n. As was the case with the explicit difference scheme, better wave behaviour is 
observed for the fourth-order scheme with the optimum a than for the sixth-order differencing 
with a = 4. The curve for a = is the most compact fourth-order scheme. When comparison is 
made between the explicit and implicit differencing cases, the most compact fourth-order scheme 
is seen to have a broader range of wave number than the optimum case of the explicit scheme. 
A comparison between the Pade scheme and the conventional fourth-order explicit scheme has 
been given by Soh.' Vorticity contour plots of a free shear flow clearly show the supremacy of 
the Pade compact scheme over the conventional higher-order differencing scheme. However, for 
a computation which employs a large number of mesh points, such as a three-dimensional flow 
simulation, the optimized explicit scheme can be a good alternative to implicit differencing if 
only a moderate number of mesh points have to be added for the resolution of all waves under 
consideration. 

Time-advancing scheme 

The four-stage Runge-Kutta technique" is adopted for the explicit formulation in time. To 
obtain new flow variables at t = (n + 1)At from known data at t = nAt, equation (2) is used to 
advance the solution in time as follows: 
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Figure 2. Wave number relation in implicit differencing scheme 

Q(l) - Q" = a,AtW(O), 

Q12) - Q" = a2AtW"', 

Q(3) - Q" = ~ 3 A ~ W ( 2 ' ,  

Q(4) - Q" = u , A ~ W ( ~ )  + D, 

where W(k) denotes S - aF/dg - dG/aq evaluated at the kth stage. The stages 0 and 4 are at 
the times nAt and (n + 1)At respectively. The parameters a l ,  a2,  a3 and a4 are taken to be a, 5, 
f and 1 respectively. This time difference is second-order-accurate and the intermediate variables 
are not stored at every stage. 

A numerical dissipation term D is added during the fourth stage to enhance the numerical 
stability. The dissipation term is introduced to be of sixth order so that our fourth-order accuracy 
remains intact: 

where we is a constant and d6q/dt6 is given by 

The derivative d6q/aq6 in the ?-direction is obtained in a similar manner. The value of we is 
taken to be 0.0125 throughout the free shear flow computations and this artificial dissipation is 
applied to internal points for 4 I i I I - 3 and 4 I j I J - 3, where I and J are the maximum 
grid indices in the t- and ?-directions respectively. In the present example no numerical instability 
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arises without the use of artificial damping in the regions of inlet, exit, top and bottom near the 
boundary. If a numerical instability occurs in the vicinity of the boundary, a biased differenced 
dissipation term may well be required in the boundary regions. 

Boundary conditions 

The boundary treatment considered here is a combination of characteristic and algebraic 
boundary conditions. The characteristic boundary condition solves the governing equation in 
a characteristic form in each co-ordinate direction and the algebraic boundary condition 
represents the given boundary conditions such as temperature, total temperature, velocity, etc. 
Equation (2) is written in a non-conservative form as 

where A = aF/dq and B = dG/aq. For the g-direction, equation (2)  with the transformation 
dq = R, dq becomes 

If  we construct the matrix R, such that the eigenvectors of the matrix A constitute its columns, 
then the matrix by a similarity transform becomes a diagonal matrix whose entries are the 
eigenvalues of A such that 

RF'AR, = At = diag(U, U ,  U + at, U - a<), 

where a, = cJ(g: + (3). Here c is the speed of sound, defined to be r T / M , ,  and U = g,u + t y u .  
In the same way, for the ?-direction the diagonal matrix becomes 

R, 'BR,, = A, = diag(V, V, I/ + a,,, V - a,,), 

where a,, = c,/(?: + ~ 3 )  and V = qxu + qyu.  The characteristic equations are then rewritten in 
each co-ordinate direction as 

where 

I 

a) P 

y + ? e  
p(u17, - Uk,) I= 



344 W. Y. SOH 

with 

P C  e = cXu + cYv, m = -__ ( u 2  + u2) ,  Y =  pCD. + Y-1 

2 J Z ( Y  - 1)c &(Y - 1)' 

Hedstrom' ' proposed that the non-reflecting boundary condition can be constructed by 
setting any eigenvalue which is an element of A to be zero if a wave is incoming towards the 
computational domain. Thompson'2 further extended this method and Lele' used the same 
boundary condition in the simulation of a free shear flow. The characteristic boundary condition 
is not coupled with the Pade formulation but is treated explicitly in space using biased 
differencing approximation as 

R;' ?!!d + diag(U, U ,  U + a,,O)R-' < ( 25 qI.j-48q1-1,j + 36q1-2,j - 16q1-3.j + %-4,j) at 

= 0, 

R;' + diag(v, v, V + a,,, O)R;'(25qi,, - 48qi,,- + 36qi,J-2 - 1 6 ~ ~ , , - ~  + 3qi,J-4) at 

= 0, 

aqi, 1 R,' __ - diag( V,, V,, 0, V - a,)R; '(25qi, - 48qi. + 36qi, - 16qi,, + 3qi, = 0, 
at 

where V, = max(V, 0) and V, = min(V, 0). The above equations are applied to the exit, top and 
bottom boundaries of a subsonic flow. In the present computation aG/aq and aF/dt are omitted 
in the 5- and ?-directions respectively. At the inlet the characteristic equation is considered only 
for the wave running at the speed U - a,, since the other three conditions are given algebraically. 
If the flow is supersonic, all the flow variables are provided at the inlet and the zero in the 
diagonal matrix must be replaced by max(U - a<, 0) on the exit plane. At a grid point next to 
the boundary, say i = I - 1, the Pade formulation (3) is used in its most compact form by 
choosing a = 4 as 

i f ; - 2  + f;-1 = -if; + 3 f I  - f , - 2 ) / h .  

The term f; is obtained explicitly by one-sided differencing as used in the characteristic boundary 
condition. 
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APPLICATION TO FREE SHEAR FLOW 

In the present study Euler computations of plane shear flow are presented to validate the 
numerical method developed. For this validation, computational results of spatially developing 
flow are examined against linear theories, experimental data and flow visualizations. The initial 
shear is given as the axial velocity distribution at x = 0, where x is the downstream variable. 
The initial vorticity thickness of the shear, 6w,, which is defined as (u: - ub)/(du*/dy*),,,, is 
chosen as the reference length 1;. Quantities with asterisks are dimensional and subscripts ‘f 
and ‘s’ denote faster and slower speeds respectively. The maximum derivative is taken at the 
inflection point y = 0. Then the initial shear profile is given as 

u = As tanh(2y) + 1, As = Au*/~u:, (8) 

where Au* = u: - u:, u: = (u; + u 3 2  and the reference velocity in this case is the average 
speed of the two streams. The momentum thickness 8, which is used as a reference length scale 
in both theoretical and experimental analyses, becomes 6w0/4 for the shear given by (8). All the 
flow computations are carried out by assuming that mixing of the two streams occurs at a 
uniform temperature. The other flow parameters chosen are T,* = 298 K, I: = 000254 m and 
p,* = 1.1839 k g ~ ~ - ~ .  

Figure 3 illustrates the two grids used. Grid I(240 x 120) and grid I1 (300 x 160) are stretched 
in both the y- and x-directions. In grid I the mesh size Ax varies between 0.4 and 1.568 with 
0.15 < By < 0.4 at the inlet and 0.333 < Ay < 0.864 at the exit plane. The inlet extends between 
- 12.43 < y < 12.43 and the exit plane between -32.7 < y < 32.7 and x reaches 196.5. In grid 
I1 the mesh size Ax varies between 0.516 and 0.84. The inlet and exit have the same height of 
-25.8 < y < 25-8 with Ay,,, = 0.12 and Aymax = 0.576. The downstream extends to x = 206. 
The numerical scheme developed has been tested on both grids I and 11, but the results presented 

Figure 3. (a) Grid I ,  240 x 120. (b) Grid 11, 300 x 160 
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here are obtained on grid I1 for subsonic flows and on grid I for the supersonic case. The time 
step is At = CrAymin/(1 + M,-'), where C, takes values between 1.7 and 1.5. It has been observed 
that a smaller time step size is required for numerical stability when the optimum a is used. 
When an external forcing is applied, there are 180 and 170 time steps in a forcing time period 
for the subsonic and supersonic cases respectively. 

Subsonic flows are simulated with and without external excitation on the initial shear. The 
Mach numbers of the two streams considered here are 0.6 and 0.3, with u: = 155.768 m s - l ,  
M, = 0.45 and p:' = 2.873 kPa. At the inlet u defined by (8), v = 0 and T = 1 are given and one 
characteristic equation is solved for the outgoing acoustic wave. At the exit the characteristic 
equations are solved for the three outgoing waves. For the other incoming acoustic wave the 
characteristic equation is also imposed with its incoming wave velocity set to zero. On the side 
boundaries all the characteristic equations are computed by setting the wave velocity to zero if 
the wave is incoming towards the computational domain. The flow case with no excitation, 
which is naturally acquired flow, is simulated first. A forcing is then given later on the v-velocity 
at the inlet from the natural flow solution to excite the flow. 

Figures 4(a)-4(c) show the contour plots of vorticity, Mach number and static pressure at 
an instant in time respectively. A large vortical structure is clearly seen in the Mach number 
and vorticity contour plots. The static pressure contour plot supports the existence of this 

Figure 4. Contours of (a) vorticity, (b) Mach number and (c) static pressure for shear flow with M = 0.6 and 0.3 
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vortical structure by aligning its local mimima with the centres of the vortices depicted in the 
Mach number and vorticity contour plots. This train of local pressure minima and maxima is 
the basis of analytical estimation of the convective velocity at which the large vortical structure 
travels. The vorticity contour plot is chosen hereafter as an appropriate visual device to examine 
the large flow structure. The vorticity contour plots in Figure 5 show a spatial evolution of 
shear flow with time. The convective velocity can be found from the time history of the vorticity 

40 60 80 100 120 140 160 
X 

Figure 5. Vorticity contours at every 200At computed by Pade scheme with optimum a 
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contours. The simulation using Pade differencing with a = 0.3 and 0.35619 predicts a convective 
velocity u, of 0.99. In the explicit computation' u, has a value between 0-96 and 1.02. It can be 
concluded that the convective velocity is about unity, which is the average velocity of the two 
streams. Brown and Roshko3 found that the large eddies travel at a constant velocity, which is 
the average speed of the two streams, and this velocity is independent of the size and location 
of the eddy. Papamoschou and Roshko13 derived the same result. This convective velocity is 
identical with the computed value and the present results also confirm the earlier observation 
that the convective velocity is independent of the eddy location and size. The only exception is 
that the convective velocity varies when two successive vortices merge into one, which is often 
referred to as vortex pairing. In this pairing process a vortex which travels behind picks up 
speed to catch up with another vortex proceeding ahead, then the two slide on each other and 
coalesce. After completion of vortex pairing the convective velocity becomes constant again until 
another pairing occurs further downstream. This vortex-pairing process is illustrated in the 
vorticity contour plots. Figure 6 shows the trajectories of vortices, illustrating their birth, pairing, 
convection and further pairing. Parallel slopes on the x - t diagram, which is the convective 
velocity, are clearly seen to be constant regardless of the vortex location. 

An unforced shear flow exhibits a distributed spectrum in its fluctuating quantity. Figure 7 
shows this for the u-velocity spectra at y = 0 and various downstream locations. A peak in the 
spectrum is clearly seen in this unforced flow. The frequency for the peak in the spectrum is 
referred to as the most preferred frequency. The Strouhal number St is used as a dimensionless 
frequency and defined to be f *O/u,*, with f * the frequency in hertz and O the initial momentum 

X 

t 

X 

Figure 6. Trajectories of vortices for shear flow with M = 0.6 and 0.3 
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Figure 7. Fourier spectra of u-velocity at y = 0: (a) x = 20.65; (b) x = 27.65; (c) x = 34.65; (d) x = 52.84; (e) x = 94.14 

thickness. In the early flow development the u-spectrum has its peak at S t  = 0021. This persists 
to some location downstream, then eventually the lower frequency St  = 0.0086 becomes 
dominant far downstream. This agrees with the general observation that a lower-frequency wave, 
whose wavelength is longer, survives further downstream than a higher-frequency wave. Linear 
theories by MichalkeI4 and Monkewitz and Huerre” show that the most amplified frequency 
is about St = 0033. In jet flow, Freymuth’ found that the growth rate observed experimentally 
agrees very well with the theory for S t  up to about 0.024 and remains constant for S t  2 0.024. 
This value is very close to the computed St of 0.021. In the light of these results, it appears that 
the most preferred frequency, which is acquired naturally, has a lower value than the most 
amplified frequency predicted by linear theory. 

It is known from linear theory that a free shear flow is unstable in the presence of a disturbance. 
The distrubance introduced grows exponentially either in space or in time. The initial shear 
layer undergoes wave propagation in the presence of a background disturbance, which is due 
to the truncation error caused by discretization of the flow equations. Travelling instability 
waves get intensified to a certain level of magnitude. In Figure 5 the shear layer appears wavy, 
yet it is well connected up to x = 60-80 depending upon the time. The shear layer, then, rolls 
up into a discrete vortex and convects downstream. In the early flow development stage before 
the vortex roll-up there is a region where linear theory is valid. This linear region can be verified 
by checking for exponential growth in the magnitude of the fluctuating u-velocity. The RMS 
fluctuation of u, denoted by u:,,,~, is used as a measure of the magnitude. Figures 8(a)-8(c) show 
the region in which the logarithmic scale of u;,,,~ grows linearly for various y-locations. The 
sharp increase near x = 0 should be neglected, since the boundary condition imposed at the 
inlet influences the flow solution in this region. It appears that the slope also varies with y and 
the maximum slope is shown on the slower fluid side. The growth rate s is defined as d(ln u:,,)/dx. 
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Figure 8. Growth profiles of turbulence intensity u , ~ ~  along x: (a) unforced; (b) forced with St = 0.021; (c) forced with 
St  = 0.0086 

Then values of s for the unforced shear flow shown in Figure 8(a) are 0096, 0.102, 0.106, 0.105, 
0-1,0.099 and 0-096 at y = -4, -3, -2, - 1, -0.06, 1 and 2 respectively. Figure 8(b) presents 
curves for when forcing is applied at its most preferred upstream frequency S t  = 0,021. Values 
of the slope are the same as those for unforced flow, because the natural shear flow is already 
dominated by the wave of that frequency. However, the linear region near the inflection point 
becomes hardly discernible. This can be an indication that non-linearity occurs earlier than in 
the unforced case. With lower-frequency forcing, s has smaller values of 0.087, 0.096 and 0.098 
at y = - 3, -2 and - 1 respectively. It is difficult to find a constant value of s near the inflection 
point and in the faster fluid territory. This can be interpreted in terms of the two waves, one of 
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forcing frequency and the other of upstream most preferred frequency, interacting non-linearly. 
However, it appears in common that uims grows to a certain magnitude and then levels off. The 
uims varies in a mildly oscillatory manner further downstream, which is not shown in the figure. 
In Figures 8(a) and 8(c) uims becomes magnified up to about 10% and in Figure 8(b) up to about 

The uims discussed above is not for a single frequency but for all the frequency content. To 
observe the growth behaviour of individual waves, a Fourier decomposition is needed. This has 
been done for the u-velcoity at  y = 0 at various downstream distances. The growth rates s 
computed are 0065,0.108 and 0.12 for St = 0~0086,0021 and 0.028 respectively. The exponential 
growth of the low-frequency wave at S t  = 0.0086 is observed at about 65 I x 5 75, which is 
sufficiently far downstream that vortex roll-up can occur. Linear wave behaviour is found in 
the regions x < 36 and x < 25 for St = 0.021 and 0028 respectively. The low-frequency 
expansion given by Monkewitz and Huerre" yields values of the growth rate s(St) at As = 3 of 
0578,O.lll and 0.122 in the same order as above. 

The profile of uims is illustrated in Figure 9. In the early development region kinks appear on 
both sides of the peak near the centre. The kink on the slower fluid side is very sharp. This 
phenomenon has been reported in both the experimental l i t e r a t ~ r e ~ ' ~ " ~  and the theoretical 
1i terat~re . l~ Figure 9(a) is for the unforced flow. The uims profile first develops into double humps, 
then evolves into a single peak further downstream. Figure 9(b) also shows the same type of 
kink in the initial development, but quite a different shape forms downstream. With excitation 
at the preferred frequency a deep valley appears in the central area. This is similar to the 
phenomenon BrowandI6 found when the shear flow is excited at nearly the most preferred 
frequency. As flow proceeds further downstream, the profile evolves to a single peak as in the 
previous case. As shown in Figure 9(c), utmS under a lower-frequency forcing, which is away from 
the most preferred upstream frequency, takes on a character similar to the unforced flow. No 
deep valley is seen in the middle of the flow evolution. 

Forcing is introduced to the initial shear to see the more organized flow structure. The 
transverse velocity u is given an oscillation Eg( y )  sin(wt), where g is a Gaussian distribution. This 
is similar to the excitation used by Lele.' For a subsonic mixing of two streams of M = 0 6  and 
0.3, E is given as 0.01 and the forcing is applied at the most preferred frequency Sr = 0021. The 
angular frequency w is 2 4 1  1.785, which equals 5.2 kHz for the flow condition given. Figure 10 
shows the vorticity contours at  consecutive time periods 192 ,us apart. As shown in Figure 5, 
vortices do not appear to be periodic in the unforced flow, the spacing between two consecutive 
vortices is irregular and vortex roll-up or merging of two or even three vortices occurs randomly. 
However, in the presence of forcing, the initial vortex-pairing process is suppressed, with the 
process resumed at some downstream location. Vortices are orderly, keeping the same distance 
apart. This is similar to the situation that Ho and Huang" observed. As shown in Figure 10, 
forcing generates a very organized flow structure. This figure also shows that the first five vortices 
appear frozen, in other words the flow up to about five vortices downstream is stationary. This 
is the precise counterpart of the flow visualization made in the laboratory using a conditional 
sampling technique, which can be achieved by synchronizing the strobe speed with the forcing 
frequency. Vortex pairing occurs downstream, consequently the flow appears to be unsteady in 
shedding vortices. This vorticity contour also gives the convective velocity as 0.99, which is the 
same value found for the unexcited case. 

A forced superconic free shear flow is also computed with M = 1.6 and 1.2. The velocity, 
temperature and density are all given at the inlet. All the characteristic equations are imposed 
at the exit as boundary conditions. Unlike subsonic flow, it is very difficult (at least in the present 
computation) to simulate supersonic shear flow without excitation. This indicates that the 

13%. 
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Figure 9. Profiles of u,,, along x: (a) unforced; (b) forced at St = 0.021 ; (c) forced at Sr = 0.0086 
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Figure 10. Vorticity contours of forced subsonic flow at every period 

nature of the free shear flow generated by two supersonic streams is far more stable than the 
subsonic flow. An external excitation of E = 0.05 is imposed on the u-velocity at the inlet in a 
similar manner as used in subsonic flow. The forcing frequency w is taken arbitrarily to be 
2n/12.29. Figure 11 shows the flow structure at every two time periods, 1 2 8 . 9 ~ ~  apart. It is 
interesting to observe that no vortex pairing occurs. Many experiments have revealed that the 
free shear of two supersonic streams exhibits poor mixing characteristics, which is an indication 
of a very stable flow situation. All the vorticity contour appears identical, because conditional 
sampling is made on the flow field which is free of vortex-pairing processes. Again, the 
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Figure 11. Vorticity contours of forced supersonic flow at every two periods 

convective velocity computed from Figure 11 is 0.99. This value is in agreement with Papa- 
moschou and Roshko.13 From these observations of the excited shear flows it can be concluded 
that the forcing has no influence on the convective velocity. 

DIRECTIVITY OF FAR-FIELD SOUND PRESSURE 

According to Lighthill's acoustic analogy,' the wave equation for the static pressure p can be 
obtained by combining the momentum and continuity equations as 

(puiuj  - r i j )  - - + - + - (p - a2 0 PX a F i  ax, am) at at2 a 2  

- a 2 p  - a; d'P = a;(L 
at2 ax? axiaxj (9) 

where a,  is the reference ambient speed of sound, p is the density, rij is the viscous stress tensor, 
F ,  is the external force exerted on a unit volume of fluid and m is the mass production per unit 
volume of fluid. The terms on the right-hand side represent sound sources. With the wave 
operator on the left-hand side of equation (9), the term am/& without spatial derivative represents 
the monopole sound source, the first-spatial-derivative term 8Fi/ax, the dipole source and the 
second-derivative term the quadrupole source. These monopole and dipole sources play 
important roles in generating sound from propellers or rotor blades. If we denote the right-hand 
side of equation (9) by a;q(x i ,  t )  and use Fuchs and Michalke's notations," the solution to (9) 
can be expressed as 
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Figure 12. Schematic of far-field and flow field variables 

(10) 

Figure 12 shows the geometric variables used in the above equation. Here P(x,)  is the field 
point where p is being sought, Q(yi) is the source point, 0 is the origin and V and A are the 
volume and surface respectively of the source over which the volume and surface integrations 
are to be performed. The quantity [.I* is defined as 

Cql* = d y i ,  t + )  = q(yi, t - r/ao)> = Ixi - yil, 

where t+  is called the retarded time. In equation (9) the acoustic field is separated from the fluid 
dynamics under the assumption that the right-hand-side terms are known and no interaction 
takes place between the sound and fluid flow. If there is no physical obstacle either in motion 
or stationary, the surface integral in equation (10) vanishes and am/& and aF,/ax, can be dropped 
out. A low-speed assumption can neglect the pressure deviation from the isentropic state. If it 
is further assumed that the momentum fluctuation puiuj is much larger than the viscous stress, 
then the sound source due to free shear flow can be approximated only with the quadrupole 
source and equation (10) can be simplified as 

The sound pressure is defined to be the RMS of the pressure. Since the free shear flow 
computed in the present work is two-dimensional and the fluctuating Reynolds stress puiuj never 
decays with x in the Euler computation (i.e. the sound-producing flow region extends to infinity 
downstream), it is not practical to obtain the sound pressure level on a realistic decibel scale. 
However, if we restrict ourselves to the sound pressure contribution only from a certain region 
of the flow, we can obtain the directivity pattern and compare the sound level between different 
flow regions. To obtain the directivity contribution, the shear flow regime is divided into fluid 
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elements, each of which has a unit spanwise length and 10 length units in the flow direction. 
For the far field, in which I is so large that I = Ixi - yil x Ixil, the pressure solution (1 1) becomes 
the following by substituting the spatial derivative with the time derivative (see details in 
Reference 18): 

(4 

where u, is the projection of ui on r and tensor contraction is employed in the last expression. 
Under the acoustic far-field assumption on the subsonic flow, the retarded time t + distributed 
over a fluid element can be represented by a single retarded time t - r/ao. The sound pressure 
pi,,, is computed using equation (12) from each sound-generating fluid element over 10000At 
and 70 time periods for the unforced and forced cases respectively. 

In the polar diagrams in Figures 13 and 14, pirns is plotted scaled with its local maximum 
value. The polar diagrams are symmetric with respect to the origin, therefore only the region 
- 4 2  < 8 6 4 2  is considered in a physical interpretation. The pirns in Figure 13 is for the 
unforced flow case. It is clearly seen that the sound pressure pattern by the upstream elements 
is quite different from that by the downstream elements. The directivity by the fluid element 
20 < x < 30 is about - lo”, which shows that the noise is highest at an angle which is almost 
aligned with the flow direction if an observer is moving along a circle of large radius with the 
sound-generating fluid element at the centre. When we take a fluid element downstream, the 
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Figure 14. Directivities of far-field sound pressure generated by each flow element of forced shear flow at St = 0.021: 
(a) x = 2&30; (b) x = 3 W ;  (c) x = 40-50; (d) x = 70-80 

directivity pattern evolves into a lateral quadrupole type, which is shown in Figures 13(c) and 
13(d). The sound level maxima are at the angles of f45". The sound level at -45" is slightly 
higher than at 45", which indicates that the high-speed side is quieter than the low-speed side. 
At the flow angle the sound pressure level is minimal. This is a similar situation to the jet noise 
experiment in which a zone of silence is observed at the flow angle. When forcing is applied at 
S t  = 0.021, the directivity pattern of a single maximum at about the flow angle is distorted faster 
to become a double-maximum type. This is shown in Figure 14. 

Table I lists the maxima of pirns contributed by each fluid element and their angles for unforced 
and forced flows. The value of pirns is modified to be the RMS of f  [dzpu:/dt2]* dV in equation 
(12). The number N represents the sound contribution from the flow element 10(N - 1) < x < 
10N. The increment in 8 is 5" and no interpolation is made to yield maximum values and 
angles. The sound pressure is the single-maximum type for x < 30 and the double-maximum 
type for x 2 30 in all three cases. The far-field pirns from the flow with low-frequency excitation 
is greater than that from the unforced flow, while the flow excited by high frequency is the 
quietest. However, for x 2 60 the situation is reversed, so that the high-frequency flow is the 
loudest, the unforced flow is medium and the low-frequency flow is the quietest. The single- 
maximum type of directivity pattern is caused by fluid elements where flow fluctuation is at an 
initial development stage and small. The double-maximum type results from flow with intensified 
flow fluctuation. 
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Table I. Local maximum values of pi,,,, and angles. A contribution is made by each 
flow element N 

5 

6 

7 

8 

9 

10 

11 

12 

13 

- 10 
-5  
- 10 
- 35 

40 
- 40 

45 
- 45 

45 
- 45 

45 
-45 

45 
- 45 

45 
- 45 

45 
- 45 

45 
- 45 

45 
- 45 

45 

0.104 
0.092 
0.094 
0126 
0.099 
0.289 
0.266 
0.543 
0520 
0.689 
0.660 
0.718 
0.696 
0.855 
0.822 
0.9 10 
0.897 
0.877 
0.851 
0.963 
0.936 
1.1 18 
1.066 

- 10 
- 10 
- 30 
- 40 

45 
- 45 

45 
- 45 

45 
- 45 

40 
- 45 

45 
- 45 

45 
- 45 

45 
- 40 

45 
- 40 

45 
- 45 

45 

0108 
0095 
0111 
0207 
0.181 
0.503 
0.48 1 
0.60 1 
0.532 
0.648 
0607 
0.455 
0443 
0.630 
0.647 
0,612 
0.62 1 
0.666 
0.644 
0880 
0.829 
1.087 
1.014 

- 10 
- 10 
- 10 
- 30 

35 
- 40 

45 
-45 

45 
- 45 

45 
- 45 

45 
- 45 

45 
- 45 

45 
- 45 

45 
- 45 

45 
-45 

45 

~~ 

0.093 
0.08 5 
0.084 
0104 
0.09 1 
0245 
0.221 
0513 
0.482 
0721 
0.680 
0.823 
0.789 
0.965 
0.942 
1.127 
1.086 
1.199 
1.155 
1.260 
1.226 
1.290 
1.230 

CONCLUSIONS AND SUGGESTION 

The fourth-order Pade compact scheme employed in this work presents flow solutions which 
exhibit important flow phenomena and agree very well with published experimental theoretical 
results. The present shear flow solution, when used as a source in the acoustic analogy, 
successfully renders a typical directivity pattern similar to that caused by a point quadrupole 
source. The acoustic analogy is a useful method to predict far-field pressure. However, because 
it uses a known solution with a series of assumptions, some important effects, including refraction, 
are omitted. If the wave phenomenon is separable from the fluid dynamics, it is suggested that 
the wave equation be solved numberically to take into account all the physical effects. Let us 
imagine that away from the flow area there is a region where flow fluctuation is negligible so 
that a pure acoustic field assumption is valid. In this case the flow and acoustic regions can be 
separated and the flow equations and wave equation are solved side by side in their respective 
regions. Pressure information is transferred from the flow region to the acoustic region through 
the boundary joining the two regions. 
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